

Date: 09-11-2024

Dept. No.

Max. : 100 Marks

Time: 01:00 pm-04:00 pm

SECTION A – K1 (CO1)

	Answer ALL the questions	(5 x 1 = 5)
1	Answer the following	
a)	Does the following statement: “If a prime p does not divide a then $(p, a) = 1$ ” holds? Justify.	
b)	State Little Fermat theorem.	
c)	What are the two basic problems that dominate the theory of quadratic residues?	
d)	Check 2 is a primitive root of 11.	
e)	Define encryption.	

SECTION A – K2 (CO1)

SECTION B – K3 (CO2)

	Answer any THREE of the following	(3 x 10 = 30)
3	State and prove Euclidean algorithm	

4	Assume $(a, m) = d$ and suppose that $d \mid p$. Then show that the linear congruence $ax \equiv b \pmod{m}$ has exactly d solutions modulo m . These are given by $t, t + \frac{m}{d}, \dots, t + (d-1)\frac{m}{d}$, where t is the solution modulo $\frac{m}{d}$, of the linear congruence $\frac{a}{d}x \equiv \frac{b}{d} \pmod{\frac{m}{d}}$.
5	State and prove Euler's criterion.
6	If the exponent of a and b modulo m are f and g respectively and $(f, g) = 1$, then prove that the exponent of ab modulo m is fg .
7	Encipher the message "PAYMENOW" using affine transformation with enciphering key $a=7$ and $b=12$.

SECTION C – K4 (CO3)

	Answer any TWO of the following	(2 x 12.5 = 25)
8	State and prove the properties of divisibility.	
9	Solve $x \equiv 2 \pmod{3}$; $x \equiv 3 \pmod{5}$ and $x \equiv 2 \pmod{7}$.	
10	Determine whether 219 is a quadratic residue or nonresidue mod 383.	
11	Examine that in every reduced residue system mod p there are exactly $\phi(d)$ numbers 'a' such that $\exp_p(a) = d$ for an odd prime p and d , any positive divisor of $p-1$.	

SECTION D – K5 (CO4)

	Answer any ONE of the following	(1 x 15 = 15)
12	Explain Jacobi symbol and prove all its properties.	
13	If $a \equiv b \pmod{m}$ and $\alpha \equiv \beta \pmod{m}$ then prove that (i) $ax + \alpha y \equiv bx + \beta y \pmod{m}$ for all integers x and y . (ii) $a\alpha \equiv b\beta \pmod{m}$ (iii) $a^n \equiv b^n \pmod{m}$ for every positive integer n . (iv) $f(a) \equiv f(b) \pmod{m}$ for every polynomial f with integer coefficients.	

SECTION E – K6 (CO5)

	Answer any ONE of the following	(1 x 20 = 20)
14	(i) State Fundamental theorem of arithmetic and examine it with an appropriate proof. (12 marks) (ii) If $n \geq 1$, then show that $\sum_{d \mid n} \varphi(d) = n$. (8 marks)	
15	Suppose that we know that our adversary is using a 2×2 enciphering matrix with a 29-letter alphabet, where $A - Z$ have the numerical equivalents 0 – 25, blank = 26, ? = 27, ! = 28. We receive the message "GFPYJP X?UYXSTLADPLW" and suppose that we know that the last five letters of	

plaintext are our adversary signature "KARLA". Decipher the above message.

\$\$\$\$\$\$\$\$\$\$\$\$\$